1. A. Ahmed, R. Gelfand, S. D. Storm, A. Lee, A. Klinkova, J. R. Guest, and M. Pelton, “Low-frequency oscillations in optical measurements of metal-nanoparticle vibrations,” Nano Lett. 22, 5365 (2022).


  1. R. Morin, G. W. Bryant, E. V. Shevchenko, Y. Sha, and M. Pelton, “Single-molecule measurements probe wavefunctions involved in electron transfer from CdSe/CdS core/shell nanorods,” J. Phys. Chem. C. 125, 21246 (2021).
  2. Z. Yu, B. Uthe, R. Gelfand, S. J. Manning, M. Pelton, and M. Ptaszek, “Weakly conjugated bacteriochlorin-bacteriochlorin dyads: Synthesis and photophysical properties,J. Porphyr. Phthalocyanines. 25, 724 (2021).
  3. B. Uthe, J. F. Collis, M. Madadi, J. E. Sader, and M. Pelton, “Highly spherical nanoparticles probe gigahertz viscoelastic flows of simple liquids without the no-slip condition,” J. Phys. Chem. Lett. 12, 1440 (2021).
  4. D. Yoo, A. Barik, F. de León-Perez, D. A. Mohr, M. Pelton, L. Martín-Moreno, and S.-H. Oh, “Plasmonic split-trench resonator for trapping and sensing,” ACS Nano 15, 6669 (2021).
  5. D. Chakraborty, B. Uthe, E. W. Malachosky, M. Pelton, and J. E. Sader, “Viscoelasticity enhances nanometer-scale slip in gigahertz-frequency liquid flows,” J. Phys. Chem. Lett. 12, 3449 (2021).
  6. Z. T. Brawley, S. D. Storm, D. A. Contreras Mora, M. Pelton, and M. Sheldon, “Angle-independent plasmonic substrate for multi-mode vibrational strong coupling with molecular thin films,” J. Chem. Phys. 154, 104305 (2021).
  7. C. Li, X. Lu, A. Srivastava, S. D. Storm, R. Gelfand, M. Pelton, M. Sukharev, and H. Harutyuntan, “Second harmonic generation from a single plasmonic nanorod strongly coupled to a WSe2 monolayer,” Nano Lett. 21, 1599 (2021).
  8. D. Yoo, F. de León-Pérez, M. Pelton, I.-H. Lee, D. A. Mohr, M. B. Raschke, J. D. Caldwell, L. Martín-Moreno, and S.-H. Oh, “Ultrastrong plasmon-phonon coupling via epsilon-near-zero nanocavities,Nat. Photon. 15, 125 (2021).


  1. E. V. Shevchenko, P. Podsiadlo, X. Wu, B. Lee, T. Rajh, R. Morin, and M. Pelton, “Visualizing heterogeneity of monodisperse CdSe nanocrystals by their assembly into three-dimensional superlattices,” ACS Nano. 14, 14989 (2020).
  2. B. Uthe, A. Meares, M. Ptaszek, and M. Pelton, “Solvent-dependent energy and charge transfer dynamics in hydroporphyrin-BODIPY arrays,” J. Chem. Phys. 153, 074302 (2020).
  3. M. A. May, D. Fialkow, T. Wu, K.-D. Park, H. Leng, J. A. Kropp, T. Gougousi, P. Lalanne, M. Pelton, and M. B. Raschke, “Nano-cavity QED with tunable nano-tip interaction,” Adv. Quant. Technol. 3, 1900087 (2020).
  4. M. Pelton, Y. Wang, I. Fedin, D. V. Talapin, and S. K. O’Leary, “Hot-carrier relaxation in CdSe/CdS core/shell nanoplatelets,” J. Phys. Chem. C 124, 1020 (2020).


  1. M. Pelton, S. D. Storm, and H. Leng.Strong coupling of excitons to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting,” Nanoscale 11, 14540 (2019). See also the Correction.
  2. K.-D. Park, M. A. May, H. Leng, J. Wang, J. A. Kropp, T. Gougousi, M. Pelton, and M. B. Raschke, “Tip-enhanced strong coupling spectroscopy and control of a single quantum emitter,” Sci. Adv. 5, eeav5931 (2019).
  3. M. Pelton, M. Sheldon, and J. Khurgin, “Editorial: Plasmon-exciton coupling,” Nanophotonics8, 513 (2019).
  4. B. Szychowski, M. Pelton, and M.-C. Daniel, “Preparation and properties of plasmonic-excitonic nanoparticle assemblies,” Nanophotonics 8, 517 (2019).
  5. Gao, R. Harder, S. H. Southworth, J. R. Guest, X. Huang, Z. Yan, L. E. Ocola, Y. Yifat, N. Sule, P. J. Ho, M. Pelton, N. F. Scherer, and L. Young, “Three-dimensional optical trapping and orientation of microparticles for coherent X-ray diffraction imaging,” Proc. Natl. Acad. Sci. USA. 116, 4018 (2019).
  6. B. Guzelturk, M. Pelton, M. Olutas, and H. V. Demir, “Giant modal gain coefficients in colloidal II-VI nanoplatelets,” Nano Lett. 19, 277 (2019).


  1. M. Miscuglio, A. Mehrabian, Z. Hu, S. I. Azzam, J. George, A. V. Kildishev, M. Pelton, and V. J. Sorger, “All-optical nonlinear activation function for photonic neural networks,” Opt. Mater. Express. 8, 3851 (2018).
  2. H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons,” Nat. Comms.9, 4012 (2018).
  3. B.Szychowski, H. Leng, M. Pelton, and M.-C. Daniel, “Controlled etching and tapering of Au nanorods using cysteamine,” Nanoscale 10, 16830 (2018).
  4. D. Chakraborty, G. V. Hartland, M. Pelton, and J. E. Sader, “When can the elastic properties of simple liquids be probed using high-frequency nanoparticle vibrations?” J. Phys. Chem. C 122, 13347 (2018).
  5. M. Pelton, “Carrier dynamics, optical gain, and lasing with colloidal quantum wells,” J. Phys. Chem. C 122, 10659 (2018). (Feature Article)
  6. A. Demortière, D. N. Leonard, V. Petkov, K. Chapman, S. Chattopadhyay, C. She, D. Cullen, T. Shibata, M. Pelton, and E. V. Shevchenko, “Strain-driven stacking faults in CdSe/CdS core/shell nanocrystals,” J. Phys. Chem. Lett. 9, 1900 (2018).


  1. Z. Yang, M. Pelton, M. I. Bodnarchuk, M. V. Kovalenko, and E. Waks, “Spontaneous emission enhancement of colloidal perovskite nanocrystals by a photonic crystal cavity,” Appl. Phys. Lett. 111, 221104 (2017).
  2. M. Pelton, J. J. Andrews, I. Fedin, D. V. Talapin, H. Leng, and S. K. O’Leary, “Nonmonotonic dependence of Auer recombination rate on shell thickness for CdSe/CdS core/shell nanoplatelets,” Nano Lett. 17, 6900 (2017).
  3. A. Ahmed, M. Pelton, and J. R. Guest, “Understanding how acoustic vibrations modulate the optical response of plasmonic metal nanoparticles,” ACS Nano 11, 9360 (2017).
  4. Z. Yang, M. Pelton, I. Fedin, D. V. Talapin, and E. Waks, “A room temperature continuous-wave nano-laser using colloidal quantum wells,” Nat. Comms. 8, 143 (2017).
  5. H. Leng, B. Szychowski, M.-C. Daniel, and M. Pelton, “Dramatic modification of coupled-plasmon resonances following exposure to electron beams,” J. Phys. Chem. Lett. 8, 3607 (2017).


  1. L. G. AbdulHalim, Z. Hooshmand, M. R. Parida, S. M. Aly, D. Le, X. Zhang, T. S. Rahman, M. Pelton, Y. Losovyj, P. A. Dowben, O. M. Bakr, O. M. Mohammed, and K. Katsiev, “pH-induced surface modification of atomically precise silver nanoclusters: An approach for tunable optical and electronic properties,” Inorg. Chem. 55, 11522 (2016).
  2. M. Otten, J. Larson, M. Min, S. M. Wild, M. Pelton, and S. K. Gray, “Origins and optimization of entanglement in plasmonically-coupled quantum dots,” Phys. Rev. A 94, 022312 (2016).
  3. H. Leng, J. Loy, V. Amin, E. A. Weiss, and M. Pelton, “Electron transfer from single semiconductor nanocrystals to individual acceptor molecules,” ACS Energy Lett. 1, 9 (2016).


  1. S. Ramakrishna, M. Pelton, S. K. Gray, and T. Seideman, “Plasmon-enhanced electron injection in dye-sensitized solar cells,” J. Phys. Chem. C 119, 22640 (2015).
  2. M. Otten, R. A. Shah, N. F. Scherer, M. Min, M. Pelton, and S. K. Gray, “Entanglement of two, three, and four plasmonically coupled quantum dots,” Phys. Rev. B 92, 125432 (2015).
  3. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photon. 9, 427 (2015).
  4. E. Baghani, S. K. O’Leary, I. Fedin, D. V. Talapin, and M. Pelton, “Auger-limited carrier recombination and relaxation in CdSe colloidal quantum wells,” J. Phys. Chem. Lett. 6, 1032 (2015).


  1. C. She, I. Fedin, D. S. Dolzhnikov, A. Demortière, R. D. Schaller, M. Pelton, and D. V. Talapin, “Low-threshold stimulated emission using colloidal quantum wells,” Nano Lett. 14, 2772 (2014).
  2. Chen, H.-R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S.-H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).


  1. M. Pelton and G. W. Bryant, Introduction to Metal-Nanoparticle Plasmonics (John Wiley & Sons, 2013).
  2. M. Pelton, D. Chakraborty, E. Malachosky, P. Guyot-Sionnest, and J. E. Sader, “Viscoelastic flows in simple liquids generated by vibrating nanostructures,” Phys. Rev. Lett. 111, 244502 (2013).
  3. Z. Yan, M. Pelton, L. Vigderman, E. Zubarev, and N. F. Scherer, “Why single-beam optical tweezers trap gold nanowires in three dimensions,” ACS Nano. 7, 8794 (2013).
  4. X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
  5. R. A. Shah, N. F. Scherer, M. Pelton, and S. K. Gray, “Ultrafast reversal of a Fano resonance in a plasmon-exciton system,” Phys. Rev. B 88, 075411 (2013).
  6. D. Chakraborty, E. van Leeuwen, M. Pelton, and J. E. Sader, “Vibration of nanoparticles in viscous fluids,” J. Phys. Chem. C 117, 8536 (2013).
  7. C. She, G. W. Bryant, A. Demortiere, E. V. Shevchenko, and M. Pelton, “Controlling the spatial location of photoexcited electrons in semiconductor CdSe/CdS core/shell nanorods,” Phys. Rev. B 87, 155427 (2013).
  8. Z. Yan, R. A. Shah, G. Chado, S. K. Gray, M. Pelton, and N. F. Scherer, “Guiding spatial arrangements of Ag nanoparticles by optical binding interactions in shaped light fields,” ACS Nano 7, 1790 (2013).

2007 – 2012

  1. M. Pelton, S. Ithurria, R. D. Schaller, D. S. Dolzhnikov, and D. V. Talapin, “Carrier cooling in colloidal quantum wells,” Nano Lett. 12, 6158 (2012).
  2. Z. Yan. J. E. Jureller, J. Sweet, M. J. Guffey, M. Pelton, and N. F. Scherer, “Three-dimensional optical trapping and manipulation of single silver nanowires,” Nano Lett. 12, 5155 (2012).
  3. Z. Yan. J. Sweet, J. E. Jureller, M. J. Guffey, M. Pelton, and N. F. Scherer, “Controlling the position and orientation of single silver nanowires on a surface using structured optical fields,ACS Nano 6, 8144 (2012).
  4. M. Pelton, Y. Tang, O. M. Bakr, and F. Stellacci, “Long-lived charge-separated states in ligand-stabilized silver clusters,” J. Am. Chem. Soc. 134, 11856 (2012).
  5. H. McDaniel, M. Pelton, N. Oh, and M. Shim, “Effects of lattice strain and band offset on electron transfer rates in type-II nanorod heterostructures,” J. Phys. Chem. Lett. 3, 1024 (2012).
  6. B. Wild, L. Cao, Y. Sun, B. P. Khanal, E. R. Zubarev, S. K. Gray, N. F. Scherer, and M. Pelton, “Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires,” ACS Nano 6, 472 (2012).
  7. M. Pelton, Y. Wang, D. Gosztola, and J. E. Sader, “Mechanical damping of longitudinal acoustic oscillations of metal nanoparticles in solution,” J. Phys. Chem. C. 115, 23732 (2011).
  8. A. E. DePrince, III, M. Pelton, J. R. Guest, and S. K. Gray, “Emergence of excited-state plasmon modes in linear hydrogen chains from time-dependent quantum mechanical methods,” Phys. Rev. Lett. 107, 196806 (2011).
  9. D. C. Hannah, N. J. Dunn, S. Ithurria, D. V. Talapin, L. X. Chen, M. Pelton, G. C. Schatz, and R. D. Schaller, “Observation of size-dependent thermalization in CdSe nanocrystals using time-resolved photoluminescence spectroscopy,” Phys. Rev. Lett. 107, 177403 (2011).
  10. K. Kim, B. D. Leahy, Y. Dai, O. Shpyrko, J. S. Soltau, M. Pelton, M. Meron, and B. Lin, “Governing factors in stress response of nanoparticle films on water surface,” J. Appl. Phys. 110, 102218 (2011).
  11. C. She, A. Demortiere, E. V. Shevchenko, and M. Pelton, “Using shape to control photoluminescence from CdSe/CdS core/shell nanorods,” J. Phys. Chem. Lett. 2, 1469 (2011).
  12. Y. Wang, A. E. DePrince, III, S. K. Gray, X.-M. Lin, and M. Pelton, “Solvent-mediated end-to-end assembly of gold nanorods,” J. Phys. Chem. Lett. 1, 2692 (2010).
  13. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633 (2010).
  14. C. H. Crouch, O. Sauter, X. Wu, R. Purcell, C. Querner, M. Drndic, and M. Pelton, “Facts and artifacts in the blinking statistics of semiconductor nanocrystals,” Nano Lett. 10, 1692 (2010).
  15. M. Pelton, J. E. Sader, J. Burgin, M. Liu, P. Guyot-Sionnest, and D. Gosztola, “Damping of acoustic vibrations in gold nanoparticles,” Nature Nanotech. 4, 492 (2009).
  16. X. Wu, Y. Sun, and M. Pelton, “Recombination rates for single colloidal quantum dots near a smooth metal film,” Phys. Chem. Chem. Phys. 11, 5867 (2009).
  17. M. Liu, T.-W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, “Excitation of dark plasmons in metal nanostructures by a localized emitter,” Phys. Rev. Lett 102, 107401 (2009).
  18. Y. Sun and M. Pelton, “Laser-driven growth of silver nanoplates on p-type GaAs substrates and their surface-enhanced Raman scattering activity,” J. Phys. Chem C 113, 6061 (2009).
  19. M. Liu, M. Pelton, and P. Guyot-Sionnest, “Reduced damping of surface plasmons at low temperatures,” Phys. Rev. B 79, 035418 (2009).
  20. M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 135 (2008).
  21. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112, 8499 (2008).
  22. I. Jung, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, and R. S. Ruoff, “Simple approach for high-contrast optical imaging and characterization of graphene-based sheets,” Nano Lett. 7, 3569 (2007).
  23. M. Pelton, G. Smith, N. F. Scherer, and R. A. Marcus, “Evidence for a diffusion-controlled mechanism for fluorescence blinking of colloidal quantum dots,” Proc. Natl. Acad. Sci. USA 104, 14249 (2007).
  24. K. C. Toussaint, Jr., M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15, 12017 (2007).
  25. S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111, 116 (2007).

2004 – 2006

  1. M. Pelton, M. Liu, H. Y. Kim, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of individual gold nanorods using plasmon resonances,” Opt. Lett. 31, 2075 (2006).
  2. M. Pelton, M. Liu, S. Park, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation,” Phys. Rev. B 73, 155419 (2006).
  3. D. Ljunggren, M. Tengner, P. Marsen, M. Pelton, and A. Karlsson, “Theory and experiment of entanglement in a quasi-phasematched two-crystal source,” Phys. Rev. A 73, 032326 (2006).
  4. B. Zhang, G. S. Solomon, M. Pelton, J. Plant, C. Santori, J. Vuckovic, and Y. Yamamoto, “Fabrication of InAs quantum dots in AlAs / GaAs DBR pillar microcavities for single photon sources,” J. Appl. Phys. 97, 073507 (2005).
  5. M. Pelton, D.G. Grier, and P. Guyot-Sionnest, “Characterizing quantum-dot blinking using noise power spectra,” Appl. Phys. Lett. 85, 819 (2004).
  6. M. Pelton, K. Ladavac, and D.G. Grier, “Transport and fractionation in periodic potential-energy landscapes,” Phys. Rev. E 70, 031108 (2004).
  7. M. Pelton, “Comment on ‘Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition’,” Phys. Rev. Lett. 92, 089701 (2004).
  8. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, “Bright, single-spatial-mode source of frequency non-degenerate, polarization-entangled photon pairs using periodically poled KTP,” Opt. Express 12, 3573 (2004).

2002 and earlier

  1. M. Pelton, C. Santori, J. Vuckovic, B.-Y. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto,  “Efficient source of single photons:  A single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89, 233602 (2002).
  2. J. Vuckovic, M. Pelton, A. Scherer, and Y. Yamamoto, “Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics,” Phys. Rev. A 66, 023808 (2002).
  3. C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto, “Polarization-correlated photon pairs from a single quantum dot,” Phys. Rev. B 66, 045308 (2002).
  4. M. Pelton, J. Vuckovic, G. S. Solomon, A. Scherer, and Y. Yamamoto, “Three-dimensionally confined modes in micropost microcavities:  Quality factors and Purcell factors,” IEEE J. Quantum Electron. 32, 170 (2002).
  5. C. Santori, G. S. Solomon, M. Pelton, and Y. Yamamoto, “Time-resolved spectroscopy of multi-excitonic decay in an InAs quantum dot,” Phys. Rev. B 65, 075406 (2002).
  6. C. Santori, M. Pelton, G. S. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Phys. Rev. Lett. 86, 1502 (2001).
  7. G. S. Solomon, M. Pelton, and Y. Yamamoto, “Single-mode spontaneous emission from a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 86, 3903 (2001).  A Comment on this Letter was published as Phys. Rev. Lett. 90, 227901 (2003); our Reply was published as Phys. Rev. Lett. 90, 227902 (2003).
  8. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513 (2000).
  9. M. Pelton and Y. Yamamoto, “Ultralow threshold laser using a single quantum dot and a microsphere cavity,” Phys. Rev. A 59, 2418 (1999).
  10. M. Pelton, S. K. O’Leary, F. Gaspari, and S. Zukotynski, “The optical absorption edge of diamond-like carbon:  A quantum-well model,” J. Appl. Phys. 83, 1029 (1997).